统计学主题系列报告

On the limiting spectral distribution of sample autocovariance matrix of (Non)linear time series

报告人:陈昱

报告地点:腾讯会议ID:664 478 804

报告时间:2021年11月01日星期一9:30-10:30

报告摘要:

 

We derive spectral distribution results for a large class of time series model, including multivariate linear and nonlinear time series. Under a classical setting that the number of observations n increased, the dimension p also increased and the ratio  p/n  tends to a positive constant,  we present that limiting spectral distribution (LSD) of the sample autocovariance matrix concentrates to its expectation. Furthermore, the LSD of the sample covariance matrix also concentrates to the LSD of the sample covariance matrix of a Gaussian process with the same covariance as the original process. With some further assumptions to the processes, the limiting spectral distribution exists and the limiting moments can be calculated.

 

 

 

主讲人简介:

陈昱,中国科学技术大学本硕博,管理学院统计与金融系副教授。研究方向为风险理论中的极限定理, 金融计量模型,网络风险分析,多元统计分析理论及时间序列分析等。主持国家自然科学基金面上项目两项,青年一项,国家重点研发专项“重大事故灾难次生衍生与多灾种耦合致灾机理与规律”的研究骨干,在 Journal of Econometrics, Journal of Business & Economic Statistics等统计学期刊上发表论文30余篇。