统计学主题系列报告

Reliability Estimation of Supply Chain System with Model Uncertainty

报告人:张新雨

报告地点:腾讯会议ID:969-241-575

报告时间:2022年11月30日星期三14:10-14:50

 

报告摘要:

Reliability is a fundamental attribute of the supply chain and is the basis for its proper operation. It is very meaningful to estimate the reliability function of a supply chain accurately. In this paper, we use the copula function to measure the dependence structure among suppliers and propose an optimal model averaging method based on Kullback-Leibler (KL) loss, which estimates the reliability function of the supply chain with a k-out-of-n: G system by weighting different copula functions. We prove the asymptotic optimality of the proposed estimator and the consistency of weights. Further, simulation studies and a real dataset demonstrate the effectiveness of the proposed method.


主讲人简介:


张新雨,中科院数学与系统科学研究院预测中心研究员,中科院管理、决策与信息系统重点实验室副主任。主要从事计量经济学和统计学的理论和应用研究工作,具体研究方向包括模型平均、机器学习和组合预测等,发表论文70余篇,其中多篇论文发表在统计学四大期刊和计量经济学顶级期刊JoE。担任SCI期刊《JSSC》领域主编和其他5个国内外期刊的编委,先后主持自科优秀和杰出青年基金项目,曾获中国青年科技奖。