统计学主题系列报告

Kernel-based Feature Screening Procedure for High-dimensional Response Data

报告人:李启寨

报告地点:腾讯会议ID:697-249-715   

报告时间:2022年12月15日星期四13:30-14:20

 

报告摘要:

This work is concerned with feature screening in the situation when both the responses and predictors are high-dimensional with adjusting for the confounders. We develop a screening procedure and show that it has a sure screening property under some mild technical conditions. Three prominent merits of the proposed method include none requirement of model specification, high-dimensionality of the responses and non-euclidean data. The Monter Carlo results and application to mice pleiotropic genetic association study demonstrate that the proposed procedures work better than two existing methods.


主讲人简介:


李启寨,中国科学院数学与系统科学研究院研究员,2020年当选美国统计学会会士(ASA Fellow),2016年当选国际统计学会推选会员(ISI Elected Member)。2001年本科毕业于中国科技大学,2006年博士毕业于中国科学院数学与系统科学研究院。研究方向包括生物医学统计,统计理论及其应用等,发表及接收发表SCI论文100余篇。现任中国数学会常务理事、中国现场统计研究会常务理事等,曾主持国家自然科学基金委优青,面上等项目。