报告人:李曾
报告地点:腾讯会议ID:973 650 604
报告时间:2022年12月21日星期三09:30-10:30
报告摘要:
The asymptotic normality for a large family of eigenvalue statistics of a general sample covariance matrix is derived under the ultra-high dimensional setting, that is, when the dimension to sample size ratio p/n→∞. Based on this CLT result, we extend the covariance matrix test problem to the new ultrahigh dimensional context, and apply it to test a matrix-valued white noise. Simulation experiments are conducted for the investigation of finite-sample properties of the general asymptotic normality of eigenvalue statistics, as well as the two developed tests.
主讲人简介:
李曾,南方科技大学统计与数据科学系副教授。2017年获得香港大学统计与精算学系博士学位,2017-2019年先后在美国华盛顿大学、宾夕法尼亚州立大学从事研究助理和博士后研究工作,并于2019年入职南方科技大学。主要研究领域为随机矩阵理论、高维统计分析等,研究成果发表于The Annals of Statistics, Scandinavian Journal of Statistics 等国际统计学期刊。