统计学主题系列报告

VC dimension and related advances

报告人:李本崇

报告地点:数学与统计学院415室

报告时间:2023年11月18日星期六08:30-09:30

邀请人:高巍


报告摘要:

To characterize the family of learnable classes in the setup of binary valued classification with the zero-one loss, Vladimir Vapnik and Alexey Chervonenkis coined the combinatorial measure called the Vapnik-Chervonenkis dimension (VC dimension) in 1970. In this talk, I will introduce the concept of VC dimension and show several examples as well as the fundamental theorem of statistical learning. Then I shall present our work in this field, we show that every concept class induced by a discrete Markov network has a labeled sample compression scheme of size equals to its VC dimension d, that is, we provide a partial positive answer to the Sample Compression Conjecture. Finally, I introduce some advances related to VC dimension.


主讲人简介:

李本崇,西安电子科技大学华山菁英副教授,硕士生导师。2001--2012年在东北师范大学读书,获概率论与数理统计方向博士学位。主要从事统计学习理论的研究,在统计学期刊 Pattern Recognition,Statistica Sinica,中国科学-数学等发表论文近20篇。曾主持国自然青年基金,陕西省青年基金,陕西省面上项目;现主持国自然面上项目。中国现场统计研究会大数据统计分会、数据科学与人工智能分会理事;全国工业统计学教学研究会、青年统计学家协会理事、数字经济与区块链技术分会理事(副秘书长);中国人工智能学会不确定性人工智能专委会委员;陕西省工业与应用数学学会理事;陕西省统计学学会理事;美国数学会评论员。