报告人:马诗洋
报告地点:数学与统计学院415教室
报告时间:2024年06月17日星期一15:00-16:00
报告摘要:
Gene-based tests are important tools for elucidating the genetic basis of complex traits. Despite substantial recent efforts in this direction, the existing tests are still limited, owing to low power and detection of false-positive signals due to the confounding effects of linkage disequilibrium. In this talk, we describe a gene-based test that attempts to address these limitations by incorporating data on long-range chromatin interactions, several recent technical advances for region-based testing, and the knockoff framework for synthetic genotype generation. Through extensive simulations and applications to multiple diseases and traits, we show that the proposed test increases the power over state-of-the-art gene-based tests and provides a narrower focus on the possible causal genes involved at a locus. We also propose a computationally efficient gene-based testing approach for biobank-scale data, and show applications to UK Biobank data with 405,296 participants for multiple binary and quantitative traits.
主讲人简介:
马诗洋,上海交通大学医学院/数学科学学院副研究员,2023年入选国家海外青年高层次人才计划,上海市海外高层次人才计划,参与科技部重点研发项目。2019年获美国罗切斯特大学统计学博士学位,之后在哥伦比亚大学生物统计系著名统计遗传学家Iuliana Ionita-Laza教授的指导下从事博士后研究工作,2022年底全职回国加入上海交通大学医学院。主要研究方向为统计遗传学和生物医学统计。近年来在国际知名期刊发表论文11篇,其中第一作者论文5篇,发表的杂志包括美国国家科学院院刊PNAS,基因组学顶级期刊Genome Biology,Nature Communications,美国人类遗传学杂志American Journal of Human Genetics和生物统计学权威期刊Statistics in Medicine等。主持上海市启明星项目(扬帆专项),上海市卫健委卫生行业临床研究专项和上海交通大学“交大之星”计划医工交叉研究基金。