统计学主题系列报告

The asymptotics of eigenvector overlaps of large sample covariance matrices and nonlinear shrinkage estimator

报告人:潘光明

报告地点:数学与统计学院415会议室

报告时间:2024年07月26日星期五16:00-17:00

报告摘要:

Consider the data matrix Y=(y_1,...,y_n). Denote the left and right singular vectors of Y by u_i and v_j respectively. This talk discusses the asymptotic behaviour of the eigenvector/singular vector overlaps u_i^TD_1u_j v_i^TD_2v_j and u_i^TD_3v_j. We establish the convergence in probability of these eigenvector overlaps toward their deterministic counterparts with explicit convergence rates when the dimension and the sample size are proportional to each other. Relying on this, we report a more precise characterization of the loss for Ledoit and Wolf's nonlinear shrinkage estimators of the population covariance matrix.

主讲人简介:

潘光明,新加坡南洋理工大学教授,博士生导师。2002年硕士毕业于安徽大学,2005年博士毕业于中国科学技术大学,之后在新加坡国立大学、荷兰埃因霍温科技大学等做博士后和学术交流工作;自2008年以来,在新加坡南洋理工大学工作。研究领域包括高维统计推断、随机矩阵理论、多元统计、应用概率等。至今已在Annals ofStatistics、Journal of American Statistical Association、Journal of Royal Statistical Society ( B)、Annals of Probability、Annals of Applied Probability、Bernoulli、IEEE Transactions on Signal Pro-cessing、IEEE Transactions on Information Theory等顶级统计学杂志上发表60余篇学术论文。现为国际统计学会会员(Elected Member of international Statistical Institute),《Random Matrices: Theory and Applications》杂志编委.