报告人:王仁振
报告地点:腾讯会议ID: 894374927
报告时间:2024年11月23日星期六19:00-20:00
报告摘要:
Hierarchical classification aims to sort the object into a hierarchical structure of categories. In this paper, we propose Label Hierarchy Transition (LHT), a unified probabilistic framework based on deep learning, to address the challenges of hierarchical classification. The LHT framework consists of a transition network and a confusion loss, which can effectively encode the underlying correlations embedded within class hierarchies. We experiment with a series of public benchmark datasets for hierarchical classification problems, and the results demonstrate the superiority of our approach beyond current state-of-the-art methods. Furthermore, we extend our proposed LHT framework to the skin lesion diagnosis task and validate its great potential in computer-aided diagnosis.
主讲人简介:
王仁振,西安交通大学数学与统计学院助理教授。研究方向机器学习、医学影像分析,尤其关注面向数据偏差的机器学习算法研究以及面向计算机辅助诊断系统的智能算法研究。目前在国内外权威期刊和会议上发表十余篇论文,包括人工智能及医学影像分析顶会ICLR, ICCV, CVPR, MICCAI, IPMI及顶刊IEEE TPAMI, TMI,MedIA,相关成果获得了ICLR 2024的最佳论文提名奖。同时,担任人工智能顶刊IEEE TPAMI, TMI以及顶会ICML, NeurIPS, ICLR, CVPR,MICCAI的审稿人。作为负责人主持国家自然科学基金青年项目、科技部国家重点研发计划子课题,并作为骨干参与国家自然科学基金重点及面上项目多项。