报告人:孙六全
报告地点:数学与统计学院415室
报告时间:2018年06月15日星期五08:20-09:20
邀请人:
报告摘要:
In longitudinal observational studies, longitudinal variables are often correlated with observation times. Also, there may exist a dependent terminal event that stops the follow-up. In this article, we propose a joint modeling approach for analyzing longitudinal data with informative observation times and a terminal event. This approach introduces a shared frailty to specify the dependence structure among the longitudinal process, the observation and terminal event times. Some estimation procedures are developed for
the model parameters and the degree of dependence. The asymptotic properties of the proposed estimators are established. The finite sample performance of the proposed estimators is examined through simulation studies. An application to a medical cost study for chronic heart failure patients from the University of Virginia Health System is provided.
主讲人简介:
北京大学理学博士,中国科学院应用数学研究所博士后;现任中国现场统计研究会副理事长,中国概率统计学会副理事长,中国统计教育学会高等教育分会副会长,北京应用统计学会副会长,中国现场统计研究会资源与环境统计分会常务副理事长,中国统计教育学会常务理事,全国工业统计学教学研究会常务理事、监事会副会长、竞赛委员会副主任委员,北京大数据协会常务理事。《Statistics and Its Interface》,《Statistics in Biosciences》,《数理统计与管理》,《应用概率统计》等杂志Associate Editor,中 国第二届数学名词审定委员会委员,《中国大百科全书》第三版统计学卷副主编、数学卷编委。